

ΠΡΟΧΩΡΟΝΤΑΣ ΕΥΘΕΙΑ

By Sanjay and Arvind Seshan

ΜΑΘΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΓΙΑ ΑΡΧΑΡΙΟΥΣ

ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ

- Να μάθεις πώς μπορείς να προγραμματίσεις το ρομπότ σου ώστε να κινείται προς τα μπρος και προς τα πίσω
- 2. Να μάθεις να χρησιμοποιείς το Move Steering block
- Να μάθεις να διαβάζεις δεδομένα από τους αισθητήρες χρησιμοποιώντας το Port View

ENTOAH MOVE STEERING

ΘΕΤΙΚΗ ΚΑΙ ΑΡΝΗΤΙΚΗ ΙΣΧΥΣ: ΚΙΝΗΣΗ ΕΜΠΡΟΣ ΚΑΙ ΠΙΣΩ

ΠΩΣ ΚΙΝΟΥΜΑΙ ΣΕ ΕΥΘΕΙΑ;

<u>BHMA 1:</u> Πράσινη ομάδα εντολών, κάνω κλικ και σέρνω την εντολή *Move Steering* στην περιοχή προγραμματισμού

<u>BHMA 2</u>: Τοποθετώ την εντολή δίπλα από την εντολή εκκίνησης (πράσινο βέλος)

ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΕ ΕΥΘΕΙΑ (ΓΙΑ 3 ΔΕΥΤΕΡΟΛΕΠΤΑ)

<u>BHMA 1</u>: Πράσινη ομάδα εντολών, κάνω κλικ και σέρνω την εντολή Move Steering στην περιοχή προγραμματισμού

<u>BHMA 2</u>: Τοποθετώ την εντολή δίπλα από την εντολή εκκίνησης

<u>BHMA 3:</u> Από τις Επιλογές. Κίνηση "3 Seconds" (3 δευτερόλεπτα)

BHMA 4: Σύνδεση του καλωδίου USB στον Η/Υ και στο EV3.

BHMA 5: Φόρτωμα του προγράμματος στο EV3

Bήµα 4

ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΕΚΠΑΙΔΕΥΤΗ

- Χωρίζω τους μαθητές σε ομάδες
- Δίνω σε κάθε ομάδα ένα αντίγραφο του φύλλου εργασίας
- Λεπτομέρειες της δραστηριότητας στη διαφάνεια 8
- Θέματα προς συζήτηση στη διαφάνεια 9
- Λύση της δραστηριότητας στη διαφάνεια 10
- Βελτιωμένη λύση στη διαφάνεια 11

ΕΥΘΕΙΑ ΚΙΝΗΣΗ: ΧΡΟΝΟΣ - ΜΟΙΡΕΣ - ΠΕΡΙΣΤΡΟΦΕΣ

ΔΡΑΣΤΗΡΙΟΤΗΤΑ

Να προγραμματίσετε το ρομπότ ώστε να ξεκινήσει από την αφετηρία μέχρι τον τερματισμό (1) και να επιστρέψει πίσω στην αφετηρία (2).

Δοκιμάστε τις λειτουργίες ΧΡΟΝΟΣ (SECONDS), μοίρες (DEGREES) ή περιστροφές (ROTATIONS) και προσαρμόστε κατάλληλα την απόσταση και τη διάρκεια.

Δοκιμάστε διαφορετικές ταχύτητες.

1 2 m ΑΦΕΤΗΡΙΑ

ΤΕΡΜΑΤΙΣΜΟΣ

Χρησιμοποίησες πολλές τυχαίες τιμές και δοκιμές;

Ναι. Προγραμματίζοντας με το χρόνο, τις μοίρες και τις περιστροφές «μαντεύοντας» τιμές και κάνοντας δοκιμές, χρειάζομαι πολύ χρόνο και προσπάθεια.

Επηρεάζει η ταχύτητα κίνησης?

Φυσικά. Όταν το ρομπότ κινείται με χρόνο, η ταχύτητα παίζει σημαντικό ρόλο.

Παίζει κάποιο ρόλο η ακτίνα της ρόδας? Γιατί? Η διάσταση της ρόδας επηρεάζει τις μοίρες και τις περιστροφές.

Είναι σημαντικό το επίπεδο φόρτισης της μπαταρίας? Γιατί?

Αν κινείσαι με το χρόνο το επίπεδο φόρτισης της μπαταρίας επηρεάζει την ισχύ.

ΗΛΥΣΗ

Υπάρχει και μια βελτιωμένη λύση στη διαφάνεια 11

ΒΕΛΤΙΩΜΕΝΗ ΛΥΣΗ: ΧΡΗΣΗ ΤΟΥ PORT VIEW

ΔΡΑΣΤΗΡΙΟΤΗΤΑ: Κίνηση του ρομπότ προς τα εμπρός από την αφετηρία (1) προς τον τερματισμό (2).

Χρειάστηκαν πολλές τυχαίες τιμές και δοκιμές ώστε το ρομπότ να σταματήσει ακριβώς στη δεύτερη γραμμή.

Δοκιμή με το Port View:

- Πήγαινε σε κάποιον από τους αισθητήρες περιστροφής (Μοτέρ Β ή C για το ρομπότ)
- Πρέπει η λειτουργία να είναι στις μοίρες με αρχική τιμή 0 (μηδέν).
- Κίνησε με το χέρι το ρομπότ από την αφετηρία στον τερματισμό. Οι ρόδες πρέπει να περιστρέφονται ομαλά, χωρίς να γλυστράνε.
- Διάβασε τώρα πόσες μοίρες κινήθηκε το ρομπότ.
- Βάλε τον αριθμό αυτό στην εντολή Move Steering για να κινηθεί το ρομπότ στη σωστή απόσταση.

- Συγγραφείς : Sanjay Seshan and Arvind Seshan
- Περισσότερα μαθήματα στο www.ev3lessons.com

Μετάφραση: Αθανάσιος Γκίκας

This work is licensed under a <u>Creative Commons Attribution-</u> <u>NonCommercial-ShareAlike 4.0 International License</u>.