
ADVANCED EV3
PROGRAMMING LESSON

EV3 Classroom:
PID Line Follower

ì Learn the limitations of proportional control

ì Learn what PID means

ì Learn how to program PID and how to tune

ì Prerequisites: Math Blocks, Color Sensor Calibration, Data Wires,
Variables, Proportional Control

We highly recommend knowledge of Algebra at a minimum. PID is a calculus-based concept and students should
understand why it is used and the math behind it before using it.

Please use Presentation Mode as there are lots of animations.

© 2020 EV3Lessons.com, Last edit 12/27/2019

Lesson Objectives

When does Proportional Control Have
Trouble?

What would a
human do?

On line à go straight

On white à turn left

Moving across line à turn right

On white à turn left

Getting further from line à
turn even more!

What would proportional
control do?

On line à go straight

On white à turn left

Moving across line à go straight!

On white à turn left

Getting further from line à turn
left the same amount!

© 2020 EV3Lessons.com, Last edit 12/27/2019

LIGHT READING = 50%100%

What would a
human do?

What would proportional
control do?

Turning left/on line à go
straight!

Getting further from line
à turn left the same
amount!

© 2020 EV3Lessons.com, Last edit 12/27/2019

1. Predict what the next
sensor reading will be

2. Has past steering fixes
helped reduce error?

How can we fix Proportional Control?

Turning left/on line à
turn right

Getting further from line
à turn even more!

Integrals and Derivatives

• When the correction is working well,
what does error readings look like?
• +5, -6, +4 -3…. i.e. bouncing around 0

• When steering is not working, what does
error look like?
• +5, +5, +6, +5… i.e. always on one side

of 0

• How can we detect this easily?
• Hint: look at the sum of all past errors

• What is an ideal value for this sum? What
does it mean if the sum is large?

• Integral è the “sum” of values

© 2020 EV3Lessons.com, Last edit 12/27/2019

1. Predict what the next sensor
reading will be?

2. Have past steering fixes
helped reduce error?

• If readings are: 75, 65, 55
à what do you think the
next reading will be?
• What if the readings

were 57, 56, 55…

• What information did you
use to guess?

• Derivative è the rate at
which a value is changing

ìProportional [Error] à How bad is the situation now?

ì Integral à Have my past fixes helped fix things?

ìDerivative à How is the situation changing?

ì PID control à combine the error, integral and derivative values
to decide how to steer the robot

© 2020 EV3Lessons.com, Last edit 12/27/2019

What is PID?

ì Solid line represents what you have seen, dotted line is the future

ìAt time 20, you see light reading = 40 and error = -10 (red X)

© 2020 EV3Lessons.com, Last edit 12/27/2019

Error

-20
0

20
40
60
80

0 10 20 30 40 50
Time (sec)

Error

-20
0

20
40
60
80

0 10 20 30 40 50
Time (sec)

Light Intensity

Subtract
target (50)

ì Looks at past history of line
follower

ì Sum of past error

ì Like area under the curve
in graph (integral)
ì Green = positive area
ì Red = negative area

© 2020 EV3Lessons.com, Last edit 12/27/2019

Integral

-50

0

50

0 10 20Er
ro

r

Time (sec)

0
100
200

0 10 20

In
te

gr
al

Time (sec)

ì How quickly is position changing?
ì Predicts where the robot will be

in the immediate future
ì Same as how fast is error

changing

ì Can be measured using tangent line
to measurements à derivative
ì Approximated using two nearby

points on graph

© 2020 EV3Lessons.com, Last edit 12/27/2019

Derivative

-15

-5

5

15

10 20 30Er
ro

r

Time (sec)

Tangent line

-5

0

5

10

10 20 30
De

riv
at

iv
e

Time (sec)

1. Take a new light sensor reading

2. Compute the “error”

3. Scale error to determine contribution to steering update (proportional control)

4. Use error to update integral (sum of all past errors)

5. Scale integral to determine contribution to steering update (integral control)

6. Use error to update derivative (difference from last error)

7. Scale derivative to determine contribution to steering update (derivative control)

8. Combine P, I, and D feedback and steer robot

© 2020 EV3Lessons.com, Last edit 12/27/2019

Pseudocode

ì This is the same as the proportional control code

© 2020 EV3Lessons.com, Last edit 12/27/2019

Code - Proportional

Error = distance from line = reading - target

Correction (P_fix) = Error scaled by proportional constant (Kp) = 0.5

ì This section calculates the integral. It adds the current error to
a variable that has the sum of all the previous errors.

ì The scaling constant is usually small since Integral can be large

© 2020 EV3Lessons.com, Last edit 12/27/2019

Code - Integral

Integral = sum of all past errors = last integral + newest error

Correction (I_fix) = Integral scaled by proportional constant (Ki) = 0.01

ì This section of code calculates the derivative. It subtracts the current
error from the past error to find the change in error.

© 2020 EV3Lessons.com, Last edit 12/27/2019

Code - Derivative

Derivative = rate of change of error = current error – last error

Correction (D_fix) = Derivative scaled by proportional constant (Kd) = 4.0

ì Each of the components have already been scaled. At this
point we can simply add them together.

© 2020 EV3Lessons.com, Last edit 12/27/2019

Putting it all Together

Add the three fixes for P, I, and D together. This will compute the final correction

Apply the correction the the steering of a move steering block

ì This is what you get if you put all these parts together.

ì We hope you now understand how PID works a bit better.

© 2020 EV3Lessons.com, Last edit 12/27/2019

Full Code

Proportional

Integral

Derivative

Putting it all Together

© 2020 EV3Lessons.com, Last edit 12/27/2019

Full Code

Proportional

Integral

Derivative

Putting it all Together

Set up the variables
for the last error and
integral before the
loop and initialize to 0
because they are read
before being written.

ì The most common way to tune your PID constants is trial and error.

ì This can take time. Here are some tips:
ì Disable everything but the proportional part (set the other constants to zero). Adjust just

the proportional constant until robot follows the line well.
ì Then, enable the integral and adjust until it provides good performance on a range of

lines.
ì Finally, enable the derivative and adjust until you are satisfied with the line following.
ì When enabling each segment, here are some good numbers to start with for the

constants:
ì P: 1.0 adjust by ±0.5 initially and ±0.1 for fine tuning

ì I: 0.05 adjust by ±0.01 initial and ±0.005 for fine tuning

ì D: 1.0 adjust by ±0.5 initially and ±0.1 for fine tuning

© 2020 EV3Lessons.com, Last edit 12/27/2019

Key Step: Tuning The PID constants

Evaluating Line followers

Proportional
ìUses the “P” in PID

ìMakes proportional turns

ìWorks well on both straight
and curved lines

ìGood for intermediate to
advanced teams à need to
know math blocks and data
wires

PID
ìIt is better than proportional

control on a very curved line,
as the robot adapts to the
curviness

ìHowever, for FIRST LEGO
League, which mostly has
straight lines, proportional
control can be sufficient

© 2020 EV3Lessons.com, Last edit 12/27/2019

© 2020 EV3Lessons.com, Last edit 12/27/2019

Proportional Control (0.6 Constant)

© 2020 EV3Lessons.com, Last edit 12/27/2019

Proportional Control (0.8 Constant)

© 2020 EV3Lessons.com, Last edit 12/27/2019

PID Control

ì This tutorial was created by Sanjay Seshan and Arvind Seshan
ì More lessons at www.ev3lessons.com

© 2020 EV3Lessons.com, Last edit 12/27/2019

CREDITS

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

