
ADVANCED EV3 
PROGRAMMING LESSON

Line Followers: Basic to PID
By Sanjay and Arvind Seshan



ì Evaluate and compare different line followers

ì Prerequisites: Complete all Line Follower lessons on 
EV3Lessons.com, Calibration

ì Videos will not play in PDF

© 2019 EV3Lessons.com, Last edit 7/19/2019 2

Lesson Objectives



© 2019 EV3Lessons.com, Last edit 7/19/2019 3

Which Program Works Best for Which 
Situation?

Smooth Line Follower
• Almost the same as simple
• Turns are less sharp
• Has trouble on sharp curves
• Good for rookie teams à need to know 

loops and switches

Simple Line Follower
• Most basic line follower
• Wiggles a lot due to sharp turns
• Good for rookie teams à need to 

know loops and switches

Proportional Follower
• Uses the “P” in PID
• Makes proportional turns
• Works well on both straight and curved 

lines
• Good for intermediate to advanced 

teams à need to know math blocks and 
data wires

3-Stage Follower
• Best for straight lines
• Droids do not recommend this.  

Just learn the proportional line 
follower.

• Need to know nested switches

Watch the videos on the next 2 slides to see all four.



© 2019 EV3Lessons.com, Last edit 7/19/2019 4

Curved Line: Watch Videos

Smooth Line FollowerSimple Line Follower

Proportional Follower3-Stage Follower



Straight Line: Watch Videos

© 2019 EV3Lessons.com, Last edit 7/19/2019 5

Smooth Line FollowerSimple Line Follower

Proportional Follower3-Stage Follower



© 2019 EV3Lessons.com, Last edit 7/19/2019 6

Watch Videos

Proportional Follower PID Follower



ì Challenge 1: Can you write a simple line follower? Hint: Review 
Beginner: Basic Line Follower lesson

ì Challenge 2: Can you write a smoother line follower? Hint: 
Change how sharp the turns are in a simple line follower.

ì Challenge 3: Can you write a three-stage line follower where 
the robot moves different 3 different ways (left, right or 
straight) based on the reading from the color sensor?

© 2019 EV3Lessons.com, Last edit 7/19/2019 7

3 Line Follower Challenges



ì CALIBRATE:
ì The programs use the EV3 Color Sensor in Light Sensor mode
ì You will have to calibrate your sensors.
ì Please refer to Intermediate: Color Sensor Calibration Lesson

ì PORTS: 
ì The Color Sensor is connected to Port 3.  
ì Please change this for your robot. 

ì WHICH SIDE OF THE LINE:
ì Please take note of which side of the line the code is written for

© 2019 EV3Lessons.com, Last edit 7/19/2019 8

A Note About Our Solutions



Simple Line Follower

© 2019 EV3Lessons.com, Last edit 7/19/2019 9



Smooth Line Follower

© 2019 EV3Lessons.com, Last edit 7/19/2019 10



Three-Stage Line Follower

© 2019 EV3Lessons.com, Last edit 7/19/2019 11



Can you write a proportional line follower that changes the angle of the turn 
depending on how far away from the line the robot is?

Pseudocode:

1. Reset the Rotation sensor (Only required for line following for a total 
distance)

2. Compute the error = Distance from line = (Light sensor reading – Target 
Reading)

3. Scale the error to determine a correction amount. Adjust your scaling factor 
to make you robot follow the line more smoothly.

4. Use the Correction value (computer in Step 3) to adjust the robot’s turn 
towards the line.

© 2019 EV3Lessons.com, Last edit 7/19/2019 12

Proportional Pseudocode



© 2019 EV3Lessons.com, Last edit 7/19/2019 13

Proportional Line Follower

Note: This program uses the color sensor in 
reflected light mode. You will need to 
calibrate your color sensor. If you do not know 
how to calibrate, please refer to our 
Calibration lesson.

Part 1: Compute the Error
Our goal is to stay at the edge of 
the line (light sensor = 50)

Part 2: Apply the correction
The error in part 1 is multiplied by 
a Constant of Proportionality 
(0.7). This will be different for 
each robot/application. See slides 
9-11 to learn how to tune this 
number.

This line follower 
ends after 1000 
degrees. Change 
this to suit your 
needs.

Reset 
the 
rotation 
sensor

Please refer to Proportional Control Lesson 
for more details



1. Take a new light sensor reading

2. Compute the “error”

3. Scale error to determine contribution to steering update (proportional control)

4. Use error to update integral (sum of all past errors)

5. Scale integral to determine contribution to steering update (integral control)

6. Use error to update derivative (difference from last error)

7. Scale derivative to determine contribution to steering update (derivative control)

8. Combine P, I, and D feedback and steer robot

© 2019 EV3Lessons.com, Last edit 7/19/2019 14

PID Pseudocode



© 2019 EV3Lessons.com, Last edit 07/10/2019 15

PID Code

Proportional Integral

Derivative Putting it all Together

Set up the variables for 
the last error and integral 
before the loop and 
initialize to 0 because 
they are read before 
being written.

Code has been 
split for 
readability. 
Continues below.

Refer to PID lesson for more 
details



Evaluating Line followers

Proportional
ì Uses the “P” in PID

ì Makes proportional turns

ì Works well on both straight 
and curved lines

ì Good for intermediate to 
advanced teams à need to 
know math blocks and data 
wires

PID
ì It is better than proportional 

control on a very curved line, 
as the robot adapts to the 
curviness

ì However, for FIRST LEGO 
League, which mostly has 
straight lines, proportional 
control can be sufficient

© 2019 EV3Lessons.com, Last edit 7/19/2019 16



ì This tutorial was created by Sanjay Seshan and Arvind Seshan

ì More lessons at www.ev3lessons.com

© 2019 EV3Lessons.com, Last edit 7/19/2019 17

Credits

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

